Liouville Theorems, a Priori Estimates, and Blow-up Rates for Solutions of Indefinite Superlinear Parabolic Problems

نویسنده

  • Juraj Földes
چکیده

In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations

In this paper, we study some new connections between parabolic Liouvilletype theorems and local and global properties of nonnegative classical solutions to superlinear parabolic problems, with or without boundary conditions. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of solutions from Liouville-type theorems, which unifies and improves many res...

متن کامل

Counter-example for Liouville theorems for indefinite problems on half spaces

We show that nonlinear Liouville theorems does not hold in general for indefinite problems on half spaces. Thus, in order to use blow-up method to obtain a priori estimates of indefinite elliptic equations, one has to impose assumptions on the nodal set of nonlinearity. The counter example is constructed by shooting method in one-dimensional case and then extended to higher dimensions.

متن کامل

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation ut = ∆u + |u|p−1u. We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence ...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems

In this paper, we study some new connections between Liouville-type theorems and local properties of nonnegative solutions to superlinear elliptic problems. Namely, we develop a general method for derivation of universal, pointwise a priori estimates of local solutions from Liouville-type theorems, which provides a simpler and unified treatment for such questions. The method is based on rescali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011